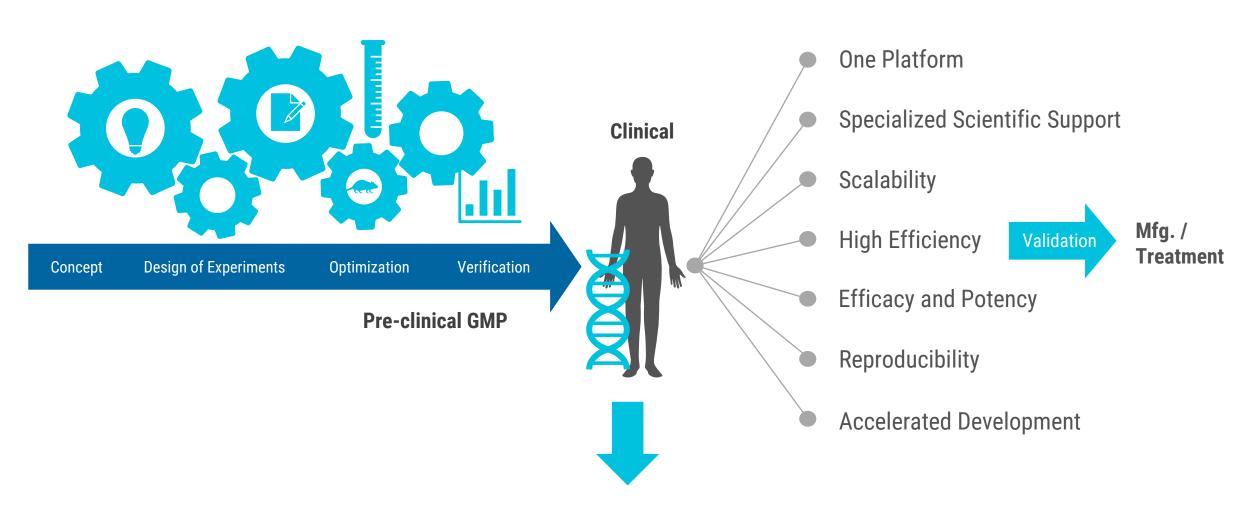


Enabling Scalable Cell Engineering Using the MaxCyte® Electroporation Platform

Andrew Mancini, PhD Field Applications Scientist March 28th, 2022

MaxCyte° expert° ATx; GTx; STx;


are registered trademarks of MaxCyte, Inc.

This document may contain proprietary content and/or confidential information owned by MaxCyte, Inc. and/or third parties that have granted MaxCyte, Inc. limited rights to use their content/information. Your receipt of this document does not constitute a license or right to use, copy, distribute, disclose, derive, or otherwise use any of the content/information contained herein. MaxCyte makes no warranties or representations regarding the accuracy, authenticity, or origin of any of the content/information in this document except as expressly stated herein.

High Performance Electroporation Technology from Concept to Clinic MaxCyte®

MaxCyte enables significant reduction in **Timelines**, **Risk** and overall **Cost**

© 2022 MaxCyte, Inc. All Rights Reserved info@maxcyte.com | www.maxcyte.com

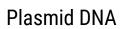
MaxCyte Electroporation Instruments

Instrument	Touch Screen	LED Indicators	Static EP	Flow EP	Barcode Reader	21CFR	Master File	cGMP
GTX*								
ST _X °								
ATX®								

The Leading Choice For Advanced Cell Engineering

High-performance engine accelerating the clinical translation of next generation cell therapies

- Twenty years of experience in primary cell transfection, protein production, and genome engineering
- Continued expansion of cell therapy partnerships with leading industry innovators and multiple programs currently in clinical trials
- Trusted by the top academic, translational and commercial groups for their R&D, PD and MFG work



© 2022 MaxCyte, Inc. All Rights Reserved info@maxcyte.com | www.maxcyte.com

High Transfection Efficiency with Any Cargo

Linear dsDNA

ssODN

 mRNA

Antisense Oligonucleotides

Small RNAs

CRISPR RNPs

Recombinant Protein

Cell Lysates

Express Any Molecule with the MaxCyte Expert™ Platform

Ion channels GPCRs Transporters Receptors

CRISPR-Cas9
ZFNs
TALENs
siRNAs/ASOs
Base and Prime Editors

Antibodies Bi-specifics Fusion Proteins Antigens

Transcription Factors

Epigenetic Regulators

Enzymes Reporters

Lentivirus
Alphavirus
Adenovirus/AAV
VLPs
Subunit vaccines

© 2022 MaxCyte, Inc. All Rights Reserved info@maxcyte.com | www.maxcyte.com

Pre-Programmed Protocols for Cell Lines and Primary Cells Maxeyte®

Immortalize	d Mammalian Ce	lls Mammalia	Mammalian Cancer Cell Lines			
10T½	L6	A549	Neuro2a			
C127	LLC-PK1	B16	NS0			
CAP/CAP-T	MDCK	EL4	PANC-1			
Ba/F3	NIH/3T3	HCT-116	Renca			
BHK-21	NRK	HeLa	SK-N-SH			
C2C12	PC12	HT-1080	SK-0V-3			
CHO	Per.C6	K562	SNU-1			
COS-7	RAW264.7	LNCaP	Sp2/0			
HEK-293	RBL	MCF7	THP-1			
Jurkat	Vero	MG-63	YB2/0			
Hematopoie	etic Cells	Stem Cells	Primary Cells	Insect Ce		

Hemato	poietic Cells	Stem Cells	Primary Cells	Insect Cell Lines
HSCs	Dendritic cells	iPSCs	Myoblasts	S2
PBMCs	NK cells	Embryonic stem cells	Keratinocytes	SL3
B cells	Granulocytes	Mesenchymal stem cells	Neurons	Sf9
T cells	Monocytes	Neural stem cells	Fibroblasts	Sf21
		Neural progenitor cells	Cardiomyocytes	

+ 10 optimization protocols for new cell types and applications

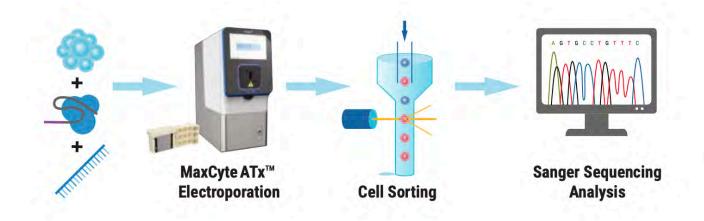
© 2022 MaxCyte, Inc. All Rights Reserved

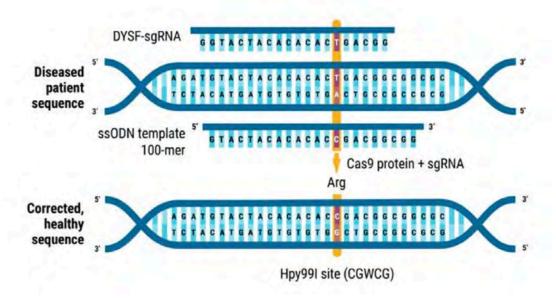
Seamless Scalability Using MaxCyte Processing Assemblies MaxCyte®

Feature	OC-25x3	R-50x3	R-50x8	OC-100x2	OC-100	OC-400	R-/G-1000	CL-1.1	CL-2
РА Туре		R50x3					R-1000	CL-1.1 MaxCyte	
High Vol.	25 μL	55 μL	55 µL	100 μL	100 μL	400 µL	1 mL	3.5 mL	100 mL
Low Vol.	15 μL	45 μL	45 µL	50 μL	50 μL	200 μL	400 μL	1 mL	10 mL
# Samples	3	3	8	2	1	1	1	1	1
High Cell	5x10 ⁶	1x10 ⁷	1x10 ⁷	2x10 ⁷	2x10 ⁷	8x10 ⁷	2x10 ⁸	7x10 ⁸	2x10 ¹⁰
Low Cell	7.5x10 ⁴	2.25x10 ⁵	2.25x10 ⁵	2.5x10 ⁵	2.5x10 ⁵	1x10 ⁶	2x10 ⁶	5x10 ⁶	5x10 ⁷
L AT∞ I									
G T _∞ I									
ST _∞ I									

A Fully Optimized CRISPR Workflow for Drug Discovery in T Cells

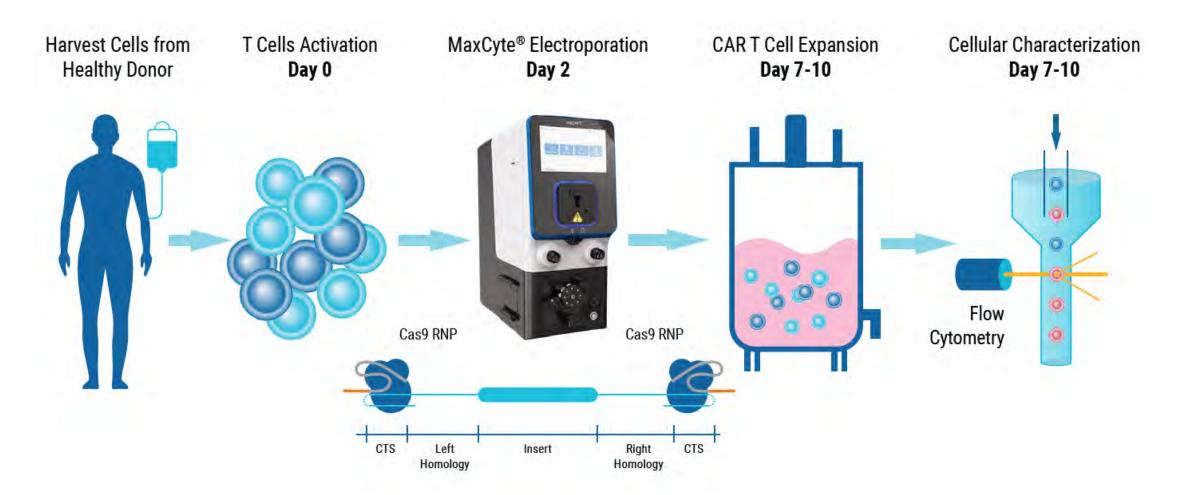
SLICE-Enabled Whole Genome Screens to Investigate Immune Dysregulation

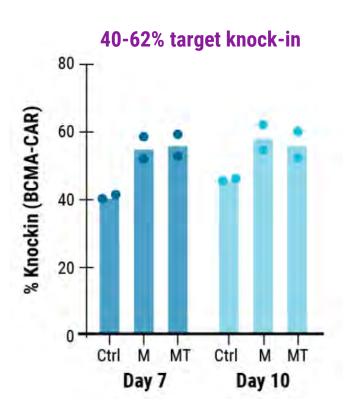


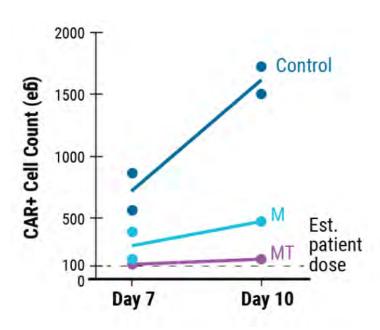


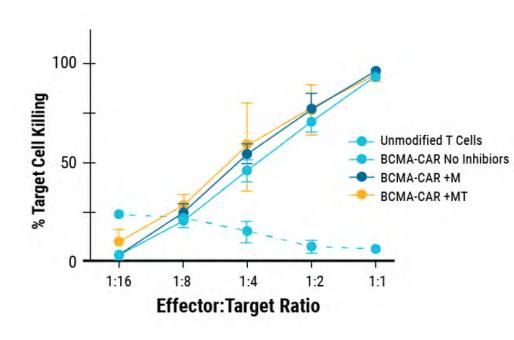
Highly Efficient Homozygous Correction of the DYSF Gene in Miyoshi Myopathy Patient iPSCs by ssODN-Mediated Knockin

>70% Homozygous corrected iPSCs enable optimized selection of isogenic clones for disease modeling and drug screening




A GMP Compatible, Non-Viral CAR T Cell Manufacturing Process




Highly Efficient CAR Knock-In and Robust T Cell Expansion

30-fold CAR+ T cell expansion over a 10 day manufacturing process

Robust cancer cell killing

Have questions? Want to learn more? Visit Booth #123!

Thank you!

Max€yte° e∞pert ATx GTx STx

are registered trademarks of MaxCyte, Inc. in the U.S.A.